Fall 2015 Math 245 Exam 2 Solutions

Problem 1. Carefully define each of the following terms:
a. gcd

The gcd or greatest common divisor of integers a, b, not both zero, is the largest integer that divides each of them.
b. (set) union

The union of two sets A, B is the set that consists of those elements in A, B, or both.
c. maximal

A poset element a is maximal if there isn't some different poset element b with $a \leq b$.
d. codomain

The codomain of a function is the set in which it takes its values. Alternatively, it is the second set of the direct product, from which the function relation is drawn.
e. bijection

A function is a bijection if it is both one-to-one and onto.
Problem 2. Consider the posets on $A=\{a, b, c\}$ where a, b are not comparable. Draw a Hasse diagram of each. Be sure to clearly separate the different diagrams.
There are seven:

Problem 3. For all sets A, B, C, prove that $(A \cap B) \backslash C \subseteq A \cup B$.
Let $x \in(A \cap B) \backslash C$. Then $x \in(A \cap B)$ and $x \notin C$. By conjunctive simplification we conclude that $x \in(A \cap B)$. Hence $x \in A$ and $x \in B$. Hence in particular $x \in A$ or $x \in B$. Since x was arbitrary, the desired result follows.
Problem 4. Let $A=\{a, b, c\}, B=\{a, b, d, e\}$. Prove or disprove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
The statement is false. To disprove, we need an element of $\mathcal{P}(A)$ that is not an element of $\mathcal{P}(B)$. That is, we need a specific subset of A that is not a subset of B. One natural choice is $x=\{c\}$. We have $x \in \mathcal{P}(A)$ but $x \notin \mathcal{P}(B)$. Hence $\mathcal{P}(A) \nsubseteq \mathcal{P}(B)$.
Problem 5. Let $A=\{a, b, c\}$. Give a relation on A that is simultaneously an equivalence relation and a partial order and a function.
There is only one such relation: $R=\{(a, a),(b, b),(c, c)\}$.
Problem 6. Use the (extended) Euclidean algorithm to first find $\operatorname{gcd}(33,9)$, and then to express $\operatorname{gcd}(33,9)$ as a linear combination of 33 and 9.
Step 1: $33=3 \cdot 9+6$. Step 2: $9=1 \cdot 6+3 . \quad$ Step 3: $6=2 \cdot 3+0$. Hence gcd $=3$, and we back-substitute. Step 4: $3=9-1 \cdot 6$. Step 5: $3=9-1 \cdot(33-3 \cdot 9)=4 \cdot 9-1 \cdot 33$.

Problem 7. Let $A=\{a, b, c\}$. Find all partitions of A.
There are five: $\{a\} \cup\{b\} \cup\{c\},\{a\} \cup\{b, c\},\{b\} \cup\{a, c\},\{c\} \cup\{a, b\}$, and $\{a, b, c\}$.
Problem 8. Prove or disprove: for all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, if f is injective then f is surjective.
The statement is false. To disprove, we need a counterexample, a function that is injective but not surjective. Many solutions are possible; one is $f(x)=e^{x}$. It is not surjective because $f(x)>0$ for all real x, so $-1 \in \mathbb{R}$ is not in the image of f. Lastly, we prove it is injective: if $f(a)=f(b)$ then $e^{a}=e^{b}$; taking logarithms we conclude that $a=b$.
Problem 9. Let S be a Boolean algebra. Prove that, for any $x \in S$, that $x \oplus 1=1$. We have $x \oplus 1=x \oplus(x \oplus \bar{x})=(x \oplus x) \oplus \bar{x}=x \oplus \bar{x}=1$. The first and last equalities are justified by a property of inverses in Boolean algebras, the second equality is justified by associativity of \oplus, and the third inequality is justified by the idempotency of \oplus.
Problem 10. Solve the recurrence $a_{n}=a_{n-1}+6 a_{n-2}$ with initial conditions $a_{0}=0, a_{1}=5$.
This has characteristic equation $t^{2}=t+6$, which factors as $(t-3)(t+2)=0$. Hence the general solution is $a_{n}=A(3)^{n}+B(-2)^{n}$. The initial conditions give us $0=a_{0}=$ $A 3^{0}+B(-2)^{0}=A+B$ and $5=a_{1}=A 3^{1}+B(-2)^{1}=3 A-2 B$. This has solution $\{A=1, B=-1\}$, so our recurrence has solution $a_{n}=3^{n}-(-2)^{n}$.

